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Abstract

A fundamental issue in perennial crop economics is finding the optimal time to replace trees
in an orchard. Orchards have two key characteristics: they consist of trees of multiple vin-
tages, and the trees have a non-monotonic yield curve. We present the first analysis of optimal
tree replacement in an orchard that has both characteristics. Our results show that cyclical
production is optimal in the long-run, and that optimally managed orchards converge to the
long-run cycle surprisingly quickly. Our results have implications for orchard valuation, orchard
planting, and orchard conversion. We are also the first to provide comparative statics on the
long-run cycle radius. In addition, forest management is a natural point of comparison to or-
chard management. We contrast the optimal replacement rules for orchards and forests to show
the qualitative differences.
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1 Introduction

Perennial crops are plants that can be harvested multiple times before replanting. Fruit-bearing

trees and vines, such as almonds, olives, apples, and grapes, are prominent examples. From an

economic perspective, perennials are durable assets that provide a flow of benefits (‘fruit’) over their

productive lifespan. As they approach the end of their lives, they become less productive, leading

the grower to consider replacing them with a more productive asset. In this paper we examine

the optimal management of an orchard, that is, a perennial crop growing enterprise (which could

be a small-holder cocoa grower in Ghana or a large-scale nut grower in California). We explore

the trade-off between maximizing the discounted net income from the orchard and the year-to-year

variation in that income stream.

Perennial crops are valuable. In the US, the gross returns for fruit and nut production was

around 30 billion dollars in 2016, led by grapes, apples, strawberries, and oranges.1 In the same

year, tree nut gross returns were around 10 billion dollars, led by almonds, walnuts, and pistachios

(USDA, 2016). Perennial crops are often used as cash crops in developing countries, e.g. coffee and

cocoa [XXX Citation needed]. Perennials can provide environmental benefits as well. Perennial

grasses such as sugarcane or miscanthus are used as a feedstock in the production of low-carbon

biofuels (Crago et al., 2010), and early research into perennial grain crops suggests that they can

provide substantial environmental benefits relative to their annual cousins, through increasing soil

carbon, reducing erosion, and requiring fewer chemical inputs (Glover et al., 2010).

A fundamental issue in perennial crop economics is finding the optimal age at which to replace

trees in an orchard. This is a normative issue, relating to what the grower should do to maximize

the value of the enterprise. This paper addresses the following broad questions. At what age should

a grower replace the trees to maximize the value of the orchard? Should the grower replace some

or all of the tree? What will be the steady-state of the optimally managed orchard in the long run?

How long will it take for the orchard to reach this state? Our specific research question is: for a
1Grapes, apples, and oranges are perennials. Strawberries can be grown as an annual or perennial. They are grown

as an annual crop in California, accounting for XXX percent of US production (California Strawberry Commission,
2017).
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grower with a preference for production smoothing, what is the optimal way to manage an orchard

with non-monotonic yields and multiple age classes?

1.1 Non-monotonic yields

The yield of a perennial is typically non-monotonic, or ‘hump-shaped’, over its lifespan. The generic

life cycle of a perennial crop is described by Ward and Faris (1968, p.1): “Normally the following

production cycle can be expected. (1) No yield for the first few years, (2) yields rapidly increasing

to a maximum, (3) yields constant or slowly declining, and (4) yield decreasing (at a faster rate).”

This relationship between age and yield, unique to each crop, is the crop’s yield curve.

Grounded in the biology of the crop, non-monotonic yield curves are commonly used in generic

discussions of the economics of perennials (Tisdell and De Silva, 1986; Mitra et al., 1991). They

also used in studies of specific crops, such as cocoa (Mahrizal et al., 2014), almonds (Klonsky et al.,

2016), blueberries (Safley et al., 2006), and sugarcane (Margarido and Santos, 2012).

1.2 Multiple age classes

When deciding whether to replace a tree in the orchard, the grower compares the value of keeping

the existing tree for another year to replacing it with the best alternative asset. As stated by Faris

(1960, p.761), “the optimum time to replace is when the marginal net revenue from the present

enterprise is equal to the highest amortized present value of anticipated net revenues from the

enterprise immediately following”. The standard [XXX correct language? Cites?] approach to

perennial replacement assumes that the current enterprise is a single tree, or a stand of identically-

aged trees,2 and that the following enterprise is also a single tree. The management issue is thus

deciding when to replace the current tree with the next one.

On the other hand, orchard growers typically have trees of multiple age-classes being grown

simultaneously, particularly when the grower’s entire enterprise is considered [XXX Add cites to

Folley (1969), and Upton and Casey (1974)]. In California, for example, there is a roughly uniform

distribution of almond tree ages from 1 to 20 years, with the density of ages declining after 20 years
2A stand of identically-aged trees is conceptually identical to a single tree [XXX True? What about tree loss?

Incorporatable into the yield curve...]
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(CDFA, 2018). The age-structure—the mixture of trees of different ages in the orchard—affects the

productivity of the orchard, due to each tree’s hump-shaped yield curve. The year-to-year variation

in the age-structure will influence the year-to-year variation in the orchard’s productivity.

1.3 Production smoothing preferences

If the grower, for whatever reason, has a preference for production smoothing, the year-to-year

variation in the productivity of the orchard influences the value of the enterprise to the grower.

Such a preference may arise from a variety of sources.

[XXX Need a definition of production smoothing?]

From the perspective of the orchard grower as a single household, the presence of credit con-

straints correlates production to consumption. A credit-constrained household with a preference of

consumption smoothing would therefore also have a preference for production smoothing (Mahrizal

et al., 2014).

From a wider, firm-level perspective, a preference for production smoothing may arise due to:

capacity constraints, where the fruit of the orchard is processed at a local processing plant (Upton

and Casey, 1974; Margarido and Santos, 2012); supply contracts, where the grower has agreed to

sell a pre-agreed quantity of fruit each year; or convex replanting costs, which would lead the grower

to smooth replanting providing an (implicit) preference for production smoothing.

[XXX This needs more thought...] Thinking of the ‘grower’ as an entire industry, it may have

preferences for smoothing production as a method of maintaining profits.

In our analysis, we remain agnostic on the mechanisms behind the preference for production

smoothing, using a strictly concave, twice continuously differentiable net benefit function to model

the preference. Whatever its cause, the presence of a production smoothing preference implies

that that replacement decisions for each tree in the orchard depend on the total production of the

orchard, and analyzing replacement decisions at the level of a single tree may be misleading.
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2 Replacing a single tree

2.1 The yield curve

The yield curve describes how the yield of the plant changes over its life cycle. We use a deterministic

yield curve, abstracting from the fact that observed yield curves in empirical applications will be

stochastic functions of multiple variables, including rainfall, temperature profile throughout the

growing season, soil type, inputs applied (e.g. fertilizer, pesticide), hours of labor, etc.

We can specific a generic yield curve with four integers representing the non-bearing period, the

period of increasing yield, the period of constant yield, and the period of decreasing yields (Mitra

et al., 1991). That is, integers P , Q, R, and N , with 0 ≤ P < Q ≤ R ≤ N , such that

fP ≤ fQ = . . . = fR ≥ . . . ≥ fN

and at least one strict inequality between f0 and fQ. That is, the yield curve is monotonically

increasing, plateaus, then monotonically decreases until the end of the tree’s lifespan. P corresponds

to the end of the non-bearing period, Q corresponds with the beginning of the yield plateau, R

with the end of the yield plateau, and N with the end of the tree’s lifespan. A stylized yield curve

is shown in figure 1.

They require only monotonic increasing and decreasing for the increasing and decreasing phases

of the AY relationship. There could be arbitrarily many inflection points. There could also be other

flat regions, and their model allows an initial non-bearing period.

In this paper we focus on two special cases of their general relationship: a two-age class model

(young trees and old trees), where old trees are less productive than young trees; and a three-age-

class model (young, medium, and old trees) where the old age-class may be either more or less

productive than medium trees.
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Figure 1: A generic non-monotonic (hump-shaped) yield curve. It is not necessary for a perennial
yield curve to have a non-bearing year.

2.2 The optimal replacement age for a two-age-class tree

Before studying the orchard problem, we need to know the optimal replacement age for a single

tree, considered in isolation.

Assume a single perennial tree that lives for at most two periods, grown over an infinite horizon

either on a 1-period or 2-period rotation. Let β(< 1) be the discount factor. The net present value

of the tree grown on a 1-period rotation is

NPV1 = f1 + βf1 + β2f1 + β3f1 + . . . =
f1

1− β

The net present value of the tree grown on a 2-period rotation is

NPV2 = f1 + βf2 + β2f1 + β3f2 + . . . =
f1 + βf2
1− β2
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The difference between the two values is

NPV1 − NPV2 = βf1 − βf2 + β3f1 − β3f2 + . . .

= β(f1 − f2) + β3(f1 − f2) + . . .

= β(f1 − f2)(1 + β2 + β4 + . . .)

=
β(f1 − f2)

1− β2

Hence if f1 > f2 the optimal replacement age is 1 (let N be the optimal replacement age, so N = 1).

If f1 < f2 the optimal replacement age is 2 (N = 2). And if f1 = f2 (N1 = 1; N2 = 2).3

The optimal rotation age does not depend on discounting in this model. Discounting will affect

the size of the net present value, but not the relative size of NPV1 and NPV2. This is a special

result, due to the assumption of a two-age-class model. In a more general model, the optimal

single tree replacement age is a function of the discount factor, as shown by Mitra et al. (1991) in

proposition 3.1.

2.3 The optimal replacement age for a three-age-class tree

Figure 2 shows the optimal replacement for a single three-age-class tree, normalizing the yield of

the second age-class to one. The horizontal axis is the yield of the first age-class relative to the

second, and the vertical axis is the yield of the third age-class relative to the second. The optimal

replacement age also depends on the discount factor. The dotted line represents the boundary

between the regions as the discount factor approaches zero, while the dashed line represents the

boundary as the discount factor approaches one.

Regardless of the discount factor, there are parameter sets giving an optimal replacement age

of three where the yield of the third age-class is less than the second age-class, that is with non-

monotonic yield. Devadoss and Luckstead (2010) identified a declining final period as a key feature

of perennials (recall quote from introduction). The analysis of Mitra et al. (1991) and Wan (1993)
3Theorem 3.1 in Mitra et al. (1991) states that there will either be one or two optimal cutting ages, N or N1 and

N2. The age(s) will occur during the declining section of the yield curve. If there are two optimal cutting ages, then
they will be adjacent. That is Q ≤ N1 ≤ N2 ≤ N1 + 1 ≤ T .
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Figure 2: The optimal replacement age for a three-age-class tree. The yield of a medium tree has
been normalized to 1, i.e. f2 = 1. The location of the regions depend on the discount factor.

were restricted to the upper left quadrant of the figure, while our analysis of the three-age-class

model encompasses the entire i∗ = 3 region, i.e. the upper left quadrant and the dark gray region.

2.4 The optimal replacement age for an N-age-class tree

Proposition 3.1 from Mitra et al. (1991), adapted to use our notation, states:

Let the initial tree be of age i, where 0 ≤ i ≤ N . There exist two integers i∗1 and i∗2 with

i∗1, i
∗
2 ≤ N and R ≤ i∗1 ≤ i∗2 ≤ i∗1 + 1, such that the set of optimal cutting sequences is

given precisely by those sequences which allow tree i, i ≥ 2, to exist for i∗1 or i∗2 periods,

and tree 1 to exist for max(0, i∗ − i) periods, where i∗ = i∗1 or i∗2. Moreover, i∗1 and i∗2

form the set of solutions to

max
0≤i∗≤N

∑i∗

i=1 fiβ
i

1− βi∗
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3 A two-age-class orchard model

In this section we present a two-age-class, infinite horizon model of a perennial orchard. We find

optimal stationary solutions for the model under three cases: young and old trees have identical

yield, young trees have higher yield, and old trees have higher yield. In the case where old trees

have higher yield, we find that the solution is generally cyclical, with one exception. We provide

intuition for the existence of optimal cycles, and examine how the maximum cycle radius changes

as function of the discount factor and the yields of young and old trees.

3.1 A two-age-class, infinite horizon orchard model

Salo and Tahvonen (2002) present a two-age-class, infinite horizon forestry model. We adapt the

Salo and Tahvonen (2002) model to perennials by changing the production function from a point

payoff to a flow payoff. Further, we adopt the aging constraint structure from Salo and Tahvonen

(2004). That is, we do not include explicit choice variables for replanting—it is a reduced form

dynamic optimization problem.

V (x10, x20) = max
xt

∞∑
t=0

βtu(ct) (1)

subject to

ct ≡ f1x1t + f2x2t

x2,t+1 ≤ x1t (2)

x1t + x2t ≤ L (= x10 + x20) (3)

xst ≥ 0 (4)

where x1t is the quantity of land allocated to young trees in period t, x2t is the quantity of land

allocated to old trees in period t, f1 is the productivity of young trees, f2 is the productivity of
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old trees,4 u(ct) is the benefit to the grower from growing/consuming fruit in period t. We assume

that the benefit function exhibits diminishing marginal returns: u′(.) > 0 and u′′(.) < 0. Finally,

ct is the total quantity of fruit harvested in period t.

This model is a reduced form version of the model of Salo and Tahvonen (2002) except that

the definition of consumption, ct, has been changed and an explicit total land constraint has been

added. In their forestry model consumption in period t was the total mass of cut trees, i.e. the

sum of young trees replanted plus old trees replanted. The consumption is calculated at the end

of each tree’s life, after the replanting decision has been made. In this model of perennial trees,

consumption in period t is the sum of the fruit harvested from young and old trees, which does not

depend on the number of trees replanted. Fruit is picked before replanting decisions are made and

there is no direct benefit from a cut tree.

Forestry:

Inherit trees → grow → remove/replant → consume → bequeath trees to next period

Perennials:

Inherit trees → grow → consume → remove/replant → bequeath trees to next period

Equation 2 is the aging constraint.5 It constrains the number of old trees in the next period

from exceeding the number of young trees in the current period. Old trees cannot be bought and

planted, they must be grown from young trees.

This is a convex optimization problem since the objective function is strictly concave and the

constraints are linear. Therefore any solution to the Karush-Kuhn-Tucker conditions will also be a

solution to the constrained optimization problem posed above.
4These productivities are net of planting costs.
5Wan (1993) calls this constraint the cross-vintage bound. Other authors such as Salo and Tahvonen follow this

terminology. We feel that aging constraint is more intuitive.
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The corresponding Lagrangian function is

L =

∞∑
t=0

βt [u(ct) + λt(x1t − x2,t+1) + ψt(L− x1t − x2t)]

The associated KKT conditions for t ≥ 1 are

β−t ∂L
∂x1t

= u′(ct)f1 + λt − ψt ≤ 0 (5)

β−t ∂L
∂x2t

= u′(ct)f2 −
λt−1

β
− ψt ≤ 0 (6)

λt ≥ 0; λt(x1t − x2,t+1) = 0 (7)

ψt ≥ 0; ψt(L− x1t − x2t) = 0 (8)

xit ≥ 0; xit
∂L
∂xit

= 0 (9)

where λt is the Lagrangian multiplier corresponding to the cross-vintage bound constraint and

ψt is the Lagrangian multiplier corresponding to the total land constraint. Because this is a reduced

form specification of the problem, only the state variable—the area of old trees each period, xt—

must be chosen each period. There are no separate control variables.

There are two choice variables, and four constraints (ct is considered a definition, not a con-

straint). Therefore, each period, there are two first order conditions (FOCs) and four complemen-

tary slackness conditions.

3.1.1 Interpreting ψt

The variable ψt is associated with the total land constraint. This model assumes that there is a

fixed quantity of land available to the grower at the beginning of the problem and that area of land

cannot be increased. The value of ψt represents the marginal increase in the value of the orchard

in period t from a permanent marginal addition to total land.

If ψt is positive, the total land constraint is binding. An implication of this is that old trees

are immediately replanted at the end of their lifespan. Land is not left fallow for any period of

time. In this paper, we will proceed as if ψt is always positive. This will certainly be true if the
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productivity coefficients of young and old trees are non-negative because the marginal utility of

harvest is always positive. If the productivity of young trees is negative, which it might be if the

productivity is interpreted as net of planting costs and planting costs are substantial, it is possible

that additional land will not be valuable. However, if planting costs are this large, the grower has

no incentive to grow the orchard at all and it will be abandoned as soon as all old trees have died.

3.1.2 Interpreting λt

The variable λt is associated with the cross-vintage bound, which constrains the area of land

allocated to old trees in period t + 1 to not exceed the area of land allocated to young trees in

period t. The value of λt represents the marginal increase in the value of the orchard in period t

from a relaxation of the aging constraint between period t and t+ 1. The constraint is relaxed by

planting additional young trees in period t.

Equation 5 shows the marginal benefit in period t from increasing the land allocated to young

trees. It consists of three components: the immediate marginal benefit from additional young trees

in period t, the future marginal benefit from additional young trees in period t, and the immediate

cost of using scarce land.

β−t ∂L
∂x1t

= u′(ct)f1︸ ︷︷ ︸
Current
marginal
benefit

+λt︸︷︷︸
Future

marginal
benefit

−ψt︸︷︷︸
Marginal
cost of
land

Growing an additional young tree in period t allows additional old trees to be grown in period t+1.

Assuming an interior solution (x1t, x2t > 0 and rearranging equation 6 we see that the net marginal

benefit of an additional old tree in period t+ 1 (valued in period t) is the marginal utility from an

old tree, less the cost of allocating the land to that tree

λt = β
(
u′(ct+1)f2 − ψt+1

)
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When the total land constraint binds (ψt > 0), the aging multiplier becomes

λt = β
(
u′(ct+1)f2 − u′(ct+1)f1 − λt+1)

)
that is, the marginal utility from an additional old tree in period t + 1 is the marginal benefit of

that old tree, less the marginal benefit of a young tree in period t + 1. Because the total land

constraint binds, an additional old tree in period t + 1 must be grown at the expense of a young

tree in period t + 1. We will use this form of λt when analyzing the stationary solutions to the

two-age-class model.

3.2 Stationary solutions to the model

We will identify stationary solutions to the two-age-class, infinite horizon orchard model. A station-

ary solution is one where either the land allocation is constant over time, or the land allocation is

cyclical, returning to the same state after finite time. We will begin by identifying a necessary and

sufficient condition for a two-period cyclical solution to the model. The steady-state (one period

cycle) will emerge as a special case of this condition. We restrict our attention to interior solutions

with a binding total land constraint, i.e x2t > 0 and L−x1t−x2t = 0, which implies that the Euler

inequality (equation 6) is satisfied with equality and that ψt is strictly positive for all t.

In a two-period cycle, the land allocation will repeat every two periods, so x2t = x2,t+2. If the

land allocations repeat, the harvest values must repeat too, ct = ct+2. To show that such a cycle is

optimal, we must find a set of non-negative λt to satisfy the KKT conditions.

Throughout this analysis we assume that old trees are more productive than young trees,6

f2 > f1, and that 0 < β < 1.

Proposition 1. For all f1 < f2 and 0 < β < 1, there exist cyclical solutions to the two-age-class

orchard management problem only if β ≤ u′(ct+1)
u′(ct)

≤ 1
β

Proof. See page 38
6If f1 > f2 there cannot be any old trees in a stationary solution to the problem. This yield assumption implies

that equation 6 must be strictly negative, which implies that x2t must be zero by the complementary slackness
condition 9.
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The maximum radius of the optimal cycles is discussed in section 3.4.

Corollary 2. For all f1 < f2 and 0 < β < 1, the balanced orchard is a solution to the two-age-class

orchard management problem (i.e. x2t = L
2 )

Proof. See page 39

3.3 Intuition for the existence of cycles

To understand whether a cycle is stable or not, consider the marginal value of a marginal deviation

from the cycle. Assume that the orchard at time t is being managed with the following cyclical

land allocation, {xt,xt+1} = {(a, L − a), (L − a, a), . . .}. The associated consumption sequence is

{ct, ct+1, . . .} = {f1a+ f2(L− a), f1(L− a) + f2 a, . . .}. From the perspective of period t, the value

of this orchard is

β−tVt = u(ct) + βu(ct+1) + β2u(ct) + . . .

This cyclical allocation will be optimal if the grower has no incentive to adjust the allocation.

There are two ways of adjusting the allocation: the grower can increase the number of young trees

in period t + 1 by replacing young trees at the end of period t, or the grower can increase the

number of young trees in period t + 2 by replacing young trees at the end of period t + 1. The

grower takes the allocation in period t as given.

If the marginal change in value from a marginal increase in young trees in both period t + 1

and t+ 2 is non-positive, then the cycle will be optimal.

Focusing on the change in young trees in period t, the marginal change in value is

β−t ∂Vt
∂x1,t+1

= 0 + βu′(ct+1)(f1 − f2) + β2u′(ct+2)(f2 − f1) + . . . (10)

=
β(f2 − f1)

1− β2
(
βu′(ct+2)− u′(ct+1)

)
=
β(f2 − f1)

1− β2
(
βu′(ct)− u′(ct+1)

)
(because ct = ct+2)
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There is no incentive to adjust the area of young trees in period t+1 if this expression is non-positive

β−t ∂Vt
∂x1,t+1

≤ 0 ⇔ u′(ct+1)

u′(ct)
≥ β

Similarly for increasing young trees in period t+ 2

β−t ∂Vt
∂x1,t+2

≤ 0 ⇔ u′(ct+1)

u′(ct)
≤ 1

β

Combining these inequalities gives the same restriction on the ratio of marginal utilities derived

from the KKT conditions in proposition 1.

x1

u(c)

L

2
a L− a

Average per-period

loss from cycle

Figure 3: Cyclical production leads to a loss in average utility.

Figure 3 shows the utility as a function of the area allocated to young trees, x1, assuming all

land is used. This figure also assumes that a < L
2 . When there are few young trees, x1 = a, there

are many old trees, x2 = L − a, total utility is high, and marginal utility is low; vice versa when

there are many young trees. Proposition 1 requires the ratio of the marginal utilities each period

to be sufficiently close to 1 and the land allocations sufficiently close to L
2 .

More broadly, the grower faces competing incentives generated by time preference and the

preference for consumption smoothing. A grower with a positive discount rate is willing to forgo a

larger quantity of future consumption to for a smaller increase in present consumption. A grower

with a preference for consumption smoothing receives greater total utility from a consumption
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stream with less year-to-year variation.

In the orchard model, these two preferences can be in tension or work in the same direction.

The grower can increase utility in period t + 2 by replacing young trees at the end of period t,

thereby increasing the area of old trees and thus consumption in period t+2. This action, however,

reduces utility in period t+ 1 because there are now fewer old trees that period. The discounting

effect determines whether the utility gain in period t + 2 is large enough to compensate for the

utility loss in period t + 1. This operation may increase or decrease the year-to-year variation

in consumption, depending on the age-structure of the orchard in period t. If the replacement

of young trees leads to less variation, then the utility gain from less variation is weighed against

the losses from discounting. If, on the other hand, the replacement of young trees leads to more

variation, there is no tension between the incentives; replacing the young trees early would lead to

an immediate loss for no future gain. We will see how the initial conditions affect these trade-offs

in section 3.5.

Figure 4 illustrates an example where the grower has eight trees each year with x1,0 = 5
8 .

This grower is facing discrete replacement decisions, but it serves to illustrate the intuition behind

whether to replace trees early, which is the same as the marginal case above. Subfigure 4a shows

the trajectory of this orchard if the grower follows Faustmann replacement only and does not

engage in smoothing. In contrast, subfigure 4b shows the same initial orchard where the grower

engages in smoothing by replacing one of the young trees. By engaging in early replacement, the

grower achieves a balanced orchard in period 2, but has lower production in period 1. Whether

this operation increases the grower’s utility depends on the discount factor.

Figure 5 shows the utility and net utility to the grower from these two orchards when the dis-

count rate is zero. With zero discount rate, the grower only has an incentive to smooth consumption

by maximizing the average harvest. The utility level of the balanced orchard is higher than the

average utility from the unbalanced orchard in period one and two. This is due to the curvature of

the utility function and Jensen’s inequality. Hence the utility loss in period one (-0.3) from early

replanting is outweighed by the utility gain in period two from the smoother harvest (0.45).

As the discount rate increases more weight is placed on the loss in period one and less is placed

17



on the gain in period two. Figure 6 shows the utility and net utility to the grower when the discount

factor is 0.5. With this discount factor, the present value of the utility loss in period one is -0.015

while the gain in period two is only 0.011. The loss outweighs the gain and the grower would not

replace the young tree early, keeping the unbalanced orchard in figure 4a for the remainder of the

time horizon.

Unlike this example, the land allocation in the orchard model is a continuous variable. If, in

the initial condition, replacing the marginal young tree is worthwhile, the farmer can continue

replacing young trees until the marginal benefit from replacing the young tree early equals the

marginal benefit from leaving it to grow. This is the idea behind equation 10.

𝑡 = 0

𝑡 = 1

𝑡 = 2

𝑡 = 3

(a) Without smoothing – no short term loss, but
long run loss from larger cycle.

Replace
this	tree

(b) With smoothing – grower forgoes an
old tree in period 2, but smoother in the
long run.

Figure 4: The age-structure of an orchard without and with smoothing.

3.4 Comparative statics of cycle radius

The inequalities in proposition 1 define a region within which it is optimal for the grower to maintain

a cyclical land allocation. How does the size of this region change with the discount factor, the

total area of land, and the relative productivity of young and old trees. First we need to identify

this region, and then calculate comparative statics to examine how it changes with parameters.
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Figure 5: With no discounting, the gain in period 2 outweighs the loss in period 1.
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Figure 6: With a sufficiently high discount rate, the loss in period 1 outweighs the gain in period
2.

Let c(x1t) be the harvest when x1t units of land are planted with young trees. Using this

definition, the inequalities from proposition 1 become

β ≤ u′(c(x1,t+1))

u′(c(x1t))
≤ 1

β

Without loss of generality, we assume that the cycle peak occurs in period t, so u′(c(x1,t+1)) >

u′(c(x1t)). Hence the right hand inequality is the relevant inequality. Requiring this inequality to

be satisfied with equality gives the largest difference in marginal utilities such that a cycle will be

optimal. Writing the allocation of young trees in terms of deviations from the balanced orchard,

x1t =
L
2 − ϕ and x1,t+1 =

L
2 + ϕ, implicitly defines the maximum cycle radius given the parameters

of the model.

u′(c(L2 − ϕ))

u′(c(L2 + ϕ))
= β (11)

Using this implicit definition of the maximum cycle radius, we can use the implicit function theorem
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to find the comparative statics of the maximum cycle radius with respect to the parameters of the

orchard management problem.

Proposition 3. The comparative statics of the maximum cycle radius with respect to the parameters

β, f1 and f2 are presented in table 1. Where A(x) = −u′′(x)
u′(x) , the Arrow-Pratt measure of absolute

risk aversion.

Proof. See page 39

α ∂ϕ
∂α

β (< 0)

f1 (> 0) ⇔ A(c(L
2
+ϕ))

A(c(L
2
−ϕ))

<
(L
2
+ϕ)

(L
2
−ϕ)

f2 (< 0) ⇔ A(c(L
2
+ϕ))

A(c(L
2
−ϕ))

<
(L
2
−ϕ)

(L
2
+ϕ)

L (> 0) ⇔ A(c(L
2
+ϕ))

A(c(L
2
−ϕ))

> 1

Table 1: Signs of comparative statics of cycle radius, ϕ, with respect to β, f1, and f2.

The level of absolute risk aversion in the utility function affects the comparative statics of the

maximum cycle radius. For example, for a function with constant absolute risk aversion, maximum

cycle radius would always increase with f1 and decrease with f2.

3.5 Transitioning to the cycle

Having identified the long-run steady state of the orchard, the question arises: what happens in

the short run? Does the orchard transition quickly to the steady-state, or only asymptotically?

Proposition 4 defines the optimal transition rule between periods, which identifies the trajectory

to the steady-state from any initial orchard.

Proposition 4. Assuming the land constraint binds every period and letting xt be the land allocated

20



to old trees in period t, the optimal transition rule is given by

xt+1 = P (xt) =



L
2 + ϕ for xt ∈ [0, L2 − ϕ)

L− xt for xt ∈ [L2 − ϕ, L2 + ϕ]

L− xt for xt ∈ (L2 + ϕ,L]

where ϕ is the maximum cycle radius, as defined in equation 11. See page ?? for proof.

L/2L
2
− φ L

2
+ φ L

L
2
+ φ

L

xot

xo,t+1

Old trees in period t

O
ld

tr
ee
s
in

p
er
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d
t
+
1

Optimal transition rule

45◦

P (.)

Figure 7: Transition map showing the (conjectured) optimal transition rule for a two age class
orchard.

Figure 7 shows the optimal transition map between old trees in period t and old trees in period

t + 1. The horizontal axis denotes the area allocated to old trees in period t and the vertical axis

denotes old trees in period t+1. This diagram is drawn assuming that the total land constraint binds

every period. The downward sloping dashed line represents the aging constraint, x2,t+1 ≤ L− x2t.
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The bold black line represents the optimal transition rule, showing the optimal area allocated to

old trees in period t+ 1 given an allocation of old trees in period t.

For allocations of old trees larger than L− ϕ, the aging constraint binds. However, when there

are few old trees in period t (i.e. x2t < L− ϕ), some young trees are replaced at the end of period

t so x2,t+1 < L− x2t. When there are many young trees, the opportunity cost of replacing a young

tree early is low.

An implication of this diagram is that the two-age-class orchard will converge to an optimal

cycle in at most two periods. If the initial orchard has x2t < L− ϕ, then an optimal cycle will be

reached in the next period. If the initial orchard has x2t > L + ϕ, then an optimal cycle will be

reached in two periods.

For an orchard, the optimal transition rule is horizontal for low allocations of old trees in period

t, or downward sloping along the aging constraint for higher allocations of old trees. Contrast this

to the optimal transition rule in a two-age-class forest, which, for low allocations of old trees, is

upward sloping before it intersects with the aging constraint (Salo and Tahvonen, 2002, fig. 1).

This difference arises because of the different timing of benefits in orchard and forestry models.

In forestry, benefits are obtained after trees are cut. If there is no cutting, there are no benefits. In

Salo and Tahvonen’s model, all old trees are automatically harvested at the end of the period. If

there are very few old trees, there will be very little automatic harvesting, so the marginal utility of

harvesting is very high. This induces the additional harvesting of young trees to increase the total

harvest in period t, outweighing the future benefits of leaving the timber to grow for another year.

Thus there are two incentives to cut young trees: increasing current consumption, and smoothing

future timber harvests.

On the other hand, in the orchard model there is no direct benefit to replacing a tree; the benefit

from the fruit is obtained before the tree is replaced. Therefore the only incentive to replace a young

tree early comes from the benefits of a smoother harvest trajectory in the future. There is no benefit

in replacing more young trees than is necessary to enter the optimal cycle region.

The two-age-class forestry model converges to an optimal cycle in finite time because of the

upwards sloping portion of the optimal transition rule, but the time to convergence depends on
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the model’s parameters. In contrast, the orchard model converges to the optimal cycle region in at

most two periods, regardless of the parameters (as long as f1 < f2).
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4 A three-age-class orchard model

We now extend the model to include a third age-class. In this model, trees live for three periods

before dying. The three periods are labeled: young, mature, and old trees. As before, the grower’s

objective is to maximize the discounted benefits from the stream of harvests from each type of tree

over an infinite time horizon.

The statement of the problem is:

V (x10, x20, x30) = max
xt

∞∑
t=0

βtu(ct) (12)

subject to

ct ≡ f1x1t + f2x2t + f3x3t

x2,t+1 ≤ x1t (13)

x3,t+1 ≤ x2t (14)

x1t + x2t + x3t ≤ L (15)

xit ≥ 0 (16)

The Lagrangian of the reduced problem is

L =

∞∑
t=0

βt [u(ct) + λ1t(x1t − x2,t+1) + λ2t(x2t − x3,t+1) + ψt(L− x1t − x2t − x3t)]
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This leads to the KKT conditions for t ≥ 1

β−t ∂L
∂x1t

= u′(ct)f1 + λ1t − ψt ≤ 0 (17)

β−t ∂L
∂x2t

= u′(ct)f2 −
λ1,t−1

β
+ λ2t − ψt ≤ 0 (18)

β−t ∂L
∂x3t

= u′(ct)f3 −
λ2,t−1

β
− ψt ≤ 0 (19)

λst ≥ 0; λst(xst − xs+1,t+1) = 0 for s ∈ 1, 2 (20)

ψt ≥ 0; ψt(L− x1t − x2t − x3t) = 0 (21)

xit ≥ 0; xit
∂L
∂xit

= 0 for i ∈ 1, 2 (22)

4.1 Stationary solutions to the 3AC model

The focus of the following analysis will be on the existence and comparative statics of cyclical

stationary optimal trajectories. Three periods is the longest possible cycle, since there are only

three age-classes. In a three period cycle, the cross-vintage bounds hold with equality, and the land

allocation in period t+ 3 is equal to the land allocation in period t.

Assuming the derivatives with respect to the state variables hold with equality (interior opti-

mum), we can use equations 18 and 19 to derive expressions for the Lagrangian multipliers for each

period in the cycle.


λ1t

λ1,t+1

λ1,t+2

 =
β

1− β3


β2(f1 − f3) (f2 − f1) β(f3 − f2)

β(f3 − f2) β2(f1 − f3) (f2 − f1)

(f2 − f1) β(f3 − f2) β2(f1 − f3)



u′(ct)

u′(ct+1)

u′(ct+2)

 (23)


λ2t

λ2,t+1

λ2,t+2

 =
β

1− β3


β2(f2 − f3) (f3 − f1) β(f1 − f2)

β(f1 − f2) β2(f2 − f3) (f3 − f1)

(f3 − f1) β(f1 − f2) β2(f2 − f3)



u′(ct)

u′(ct+1)

u′(ct+2)

 (24)
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A sufficient condition for a three period interior cycle to be optimal is that all six Lagrange

multipliers must be non-negative. A sufficient condition for this is that the Faustmann age for the

related single tree replacement problem must be 3.

For a perennial crop, the Faustmann age, i∗, is defined by

∑i∗

s=1 β
s−1fs

1− βi∗
≥

∑i
s=1 β

s−1fs
1− βi

∀i ∈ {1, . . . , N}

The Faustmann age is unique if this condition is satisfied with strict inequality.

For a three-age-class model, a unique Faustmann age of three implies two inequalities

f1
1− β

<
f1 + βf2 + β2f3

1− β3
⇔ f1 <

f2 + βf3
1 + β

f1 + βf2
1− β2

<
f1 + βf2 + β2f3

1− β3
⇔ f1 < f3(1 + β)− βf2

Assuming i∗ = 3, in a balanced (non-cyclical) stationary orchard, one third of the land is

allocated to each of the three age classes each period. A constant land allocation leads to constant

utility and to constant marginal utility. Let c̄ = f1+f2+f3
3 , the production of the balanced orchard.

The λ’s are therefore constant, reducing the sufficiency conditions to

λ1 =
βu′(c̄)

1− β3
(
(f2 − f1) + β(f3 − f2) + β2(f1 − f3)

)
≥ 0 ⇔ f1 ≤

f2 + βf3
1 + β

λ2 =
βu′(c̄)

1− β3
(
(f3 − f1) + β(f1 − f2) + β2(f2 − f3)

)
≥ 0 ⇔ f1 ≤ f3(1 + β)− βf2

Therefore we can see how assuming a unique Faustmann age of three guarantees the optimality

of the balanced stationary orchard

f1 <
f2 + βf3
1 + β

⇒ λ1 > 0

f1 < f3(1 + β)− f2 ⇒ λ2 > 0

Since both multipliers are strictly positive at the balanced stationary orchard, by the continuity

of 23 and 24 there exists some set of deviations ϕ1, ϕ2 and ϕ3, where ϕ1 + ϕ2 + ϕ3 = 0 and at least
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one ϕs is non-zero, such that the cycle defined by O = {1
3 + ϕ1,

1
3 + ϕ2,

1
3 + ϕ3} is also optimal.

Therefore when there are three age-classes and for all β ∈ (0, 1) there exist cyclical trajectories

of period 3 that are optimal. Denote the set of allocations from which the optimal trajectory is a

cycle as K0.

(a) The space of three age-class yield curves, with f2
normalized to 1.

(b) The Faustmann age as a function of the yield
curve. The gray square represents the yield curves
studied by Mitra et al. (1991). The light green (i∗ =
2) and dark green (τ∗ = 3) regions represent the non-
monotonic yield curves that can be analyzed by our
model.

4.2 Uniform convergence to the cycle region

Theorem 5. For all x0 /∈ K0, the optimal trajectory converges uniformly to K0.

4.3 Example trajectories: Numerical comparative statics for three-age-class

model

This section uses a running horizon algorithm to approximate the optimal trajectory for a three-

age-class model (see appendix A for more details on the algorithm. We use these approximations

to develop numerical comparative statics with respect to the yield of old trees and the discount

factor.
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Figure 9: Example trajectory starting from all young trees with β = 0.75, f = (1, 3, 2)

Figure 9 shows an example trajectory beginning with all young trees (right corner of triangle)

assuming β = 0.75, f = (1, 3, 2). The red dots show the land allocation in each period, and the

blue lines connecting them show the transitions.

In the initial period there are all young trees. In period one, all the young trees have matured

to become medium trees. In period two, just under two thirds of the medium trees become old

trees, and just over one third are replaced before their Faustmann age of three. In period three,

there are only young and medium trees. No trees are replaced early. In period four, all young trees

become medium trees, but most medium trees are cut (before their Faustmann age), leaving only

a few old trees. In period five, the trajectory enters the optimal cycle, centered on the balanced

orchard.

Figure 10 shows numerical comparative statics for trajectories in the three-age-class model. Like

the two-age-class model, the cycle region shrinks in size as the discount factor increases. The cycle

radius is largest when the the yield of medium and old trees is equal.
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(a) β = 0.5, f = [1 3 2] (b) β = 0.75, f = [1 3 2] (c) β = 0.95, f = [1 3 2]

(d) β = 0.5, f = [1 3 3] (e) β = 0.75, f = [1 3 3] (f) β = 0.95, f = [1 3 3]

(g) β = 0.5, f = [1 3 6] (h) β = 0.75, f = [1 3 6] (i) β = 0.95, f = [1 3 6]

Figure 10: Three-age-class optimal orchard trajectories. Columns hold discount rate constant.
Rows hold the yield curve constant. Each figure starts at with an initial orchard composed entirely
of young trees, x0 = (1 0 0)
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4.4 Numerical comparative statics of orchard value

Figure ?? shows numerical comparative statics of orchard value. Each subfigure represents a value

surface, showing the value of the optimal program for each initial condition. The red dot shows

the highest value orchard for each set of parameters. For low discount factors, the optimal orchard

is on the boundary of the simplex. As the discount factor increases, the optimal orchard converges

towards the balanced orchard. This convergence appears to occur more quickly when the yield of

old trees is greater than the yield of medium trees, that is when the yield curve is monotonically

increasing. Additionally, increasing the yield of old trees increases the allocation of land to old

trees in the optimal orchard.
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5 Discussion

5.1 Production cycles

A notable feature of perennial crops is that they exhibit boom and bust cycles in their production,

increasing the risk to farmers of investing in these crops.

It has been conjectured that better price forecasts could reduce or eliminate acreage cycles in

perennial crops. For example, in the case of lemons in California, French and Bressler (1962, p.

1036) stated: “If ‘better’ knowledge, including the realization that there is a cycle, leads to more

realistic forecasts, then the cycle would be moderated or eliminated.” Knapp (1987) has advanced

an alternative hypothesis: acreage cycles are an inherent feature of perennial crop production

systems, arising from the biology of the crop causing lags in production, rather than from imperfect

information and foresight on the part of the growers.

Our work shows that production cycles can be a feature of optimally managed perennial crop

production in a setting with perfect foresight (no uncertainty). This suggests that improved crop

forecasts would not eliminate perennial crop production cycles.
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6 Conclusion

In this paper we extended the existing work on the optimal management of age-structured orchards

in two key ways. First, we extended the results for a grower with concave utility and trees with

a monotonically increasing yield by identifying the optimal transition trajectory from an arbitrary

initial orchard to the long-run, cyclical, steady-state. Furthermore, we characterized the cycle re-

gions and showed how its radius changes as a function of the economic and technological parameters

of the grower’s problem. Second, we extended the theoretical results on the long-run steady-state

of an optimally managed orchard to a setting with a non-monotonic yield curve, grounding the

results in a more realistic tree technology.

In both settings, the grower faces a trade-off between discounting and income smoothing. The

benefits of smoother production approach zero as the orchard approaches the balanced orchard,

but the losses due to discounting remain strictly positive, so the grower always accepts a level of

cyclical production (unless the grower began with a balanced orchard).

These results answer a natural conjecture about the optimality of the balanced orchard. Even

acknowledging that the optimal trajectory starting from an initial condition away from the balanced

orchard does not lead to the balanced orchard, one might conjecture that the balanced orchard is the

optimal initial condition. That is, if the grower had free choice of initial orchard, knowing that the

orchard was to be managed optimally thereafter, would the grower pick the balanced orchard? One

might be tempted to answer yes, because the balanced orchard maximizes the per-period average

utility of the grower. However, in the presence of discounting, our numerical results show that the

grower prefers an initial orchard with a larger fraction of land allocated to higher yielding age-

classes. Again, discounting is at work, leading the grower to prefer a short-run increase in utility at

the expense of a long-run increase in average utility. For a monotonically increasing yield curve, our

numerical results suggest that the balanced orchard is increasingly preferred as the discount factor

approaches one. This is consistent with the ‘golden rule’ of capital accumulation from undiscounted

capital theory. However, for the non-monotonic yield case, it is not clear that the balanced orchard

is preferred as the discount factor approaches one. More research is required to determine, in the
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case of non-monotonic yields, whether the optimal initial orchard simply converges more slowly to

the balanced orchard, or that the golden rule is not followed in this case.
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A Running Horizon Algorithm

The running horizon algorithm approximates the solution to an infinite horizon dynamic problem

by calculating the solution to a sequence of finite horizon problems. This description is adapted

from Franklin (2012) and Salo and Tahvonen (2004). The relevant parts of their papers are included

in the appendix.

We wish to find a solution to the non-linear programming problem

V (x0) = max
{xt}∞t=1

∞∑
t=0

βtu(ct) s.t. constraints

Numerically solving this problem directly requires approximating the value function, a compu-

tationally intensive and unstable process.

Alternatively, we can repeatedly solve the finite horizon analog of the infinite horizon problem

to obtain an approximation of the infinite horizon solution. The finite horizon analog is given by:

V T (x0) = max
{xt}Tt=1

T∑
t=0

βtu(ct) s.t. constraints

Solving this problem is relatively straightforward, and can be directly implemented with a non-

linear numerical optimization algorithm, e.g. the fmincon command in MATLAB.

The optimal sequence in this finite horizon problem is {x∗
t (T,x0)}Tt=1. The parentheses following

xt denote the dependence of the solution on the length of the finite horizon, T , and the initial

condition x0.

The running horizon algorithm generates a vector of length S, approximating the first S terms

of the infinite horizon problem, {x̂t}St=1 ≈ {x(∞,x0)
t }St=1. The choice of S may affect the accuracy of

the approximation, since errors in the approximation in the early terms will propagate to the later

terms. For the orchard management problem, we want to pick an S large enough for the infinite

horizon approximation to reach the steady state.

The first term of the approximation vector is the first term of the solution to the T period

problem, starting from x0. That is, x̂1 = x∗
1(T,x0). The second term of the approximation vector
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is generated by solving the T period problem, using x̂1 as the initial condition, and taking the first

term of the solution to this finite horizon problem. That is, x̂2 = x∗
1(T, x̂1). The remaining S − 2

terms of the approximation vector are generated in a similar manner. That is, x̂s = x∗
1(T, x̂s−1).

This algorithm works because the first period solution to the finite horizon problem approaches

the first period solution to the infinite horizon problem as the finite horizon approaches infinity.

lim
T→∞

x
(T,x0)
1 = x

(∞,x0)
1

This occurs because, with positive discounting, the behavior of the finite horizon problem at the

terminal time has a diminishing effect on the first period choice as the horizon is extended.
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B Proofs

Proof of proposition 1 (page 14). From equations 5 and 6 and assuming an interior allocation using

all available land we find an expression for λt

λt = β(u′(ct+1)(f2 − f1)− λt+1)

Shifting this equation forward by one period gives an expression for λt+1

λt+1 = β(u′(ct+2)(f2 − f1)− λt+2)

Substituting the expression for λt+1 into the expression for λt and assuming that there is a two-

period cycle, i.e. x1t = x1,t+2, x2t = x2,t+2, gives

λt = β(f2 − f1)(u
′(ct+1)− βu′(ct)) + β2λt+2

For the two-period cycle to be optimal, this expression for λt must be non-negative. We will first

find a condition on the allocations in the cycle which guarantees that there exists a sequence of non-

negative λt’s which satisfy the KKT conditions. This proves sufficiency of the condition. To prove

necessity, we will show that for cycles violating this condition, there is no sequence of non-negative

λ’s, and therefore no solution to the KKTs.

Assume that λt = λt+2. Applying the assumption and rearranging gives

λt =
β(f2 − f1)

1− β2
(u′(ct+1)− βu′(ct))

For this expression to be non-negative we must have

u′(ct+1)− βu′(ct) ≥ 0 ⇒ u′(ct+1)

u′(ct)
≥ β
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Similarly for λt+1

u′(ct)− βu′(ct+1) ≥ 0 ⇒ u′(ct+1)

u′(ct)
≤ 1

β

Combining these inequalities

β ≤ u′(ct+1)

u′(ct)
≤ 1

β
(25)

Therefore, if β ≤ u′(ct+1)
u′(ct)

≤ 1
β , then there exists set of non-negative lambdas, that combined

with the cyclical land allocation, solve the solve the two-age-class orchard problem. This proves

the sufficiency of equation 25.

Proof of corollary 2 (page 15). For each period in a balanced orchard, half of the land is allocated

to young trees and half to old trees. Since the land allocation is the same every period, the

production is the same every period ct = ct+1.

Applying this production path to inequality 25 gives

β ≤ u′(ct)

u′(ct)
≤ 1

β
⇒ β ≤ 1 ≤ 1

β

which is true for all 0 < β ≤ 1. Hence the balanced orchard is a solution to the two-age-class

orchard management problem.

Proof of proposition 3 (page 20). Define the function g(.) as

g(ϕ; β, f1, f2, L) =
u′(c(L2 − ϕ̄))

u′(c(L2 + ϕ̄))
− β = 0

=
u′(L2 (f1 + f2) + (f2 − f1)ϕ̄)

u′(L2 (f1 + f2)− (f2 − f1)ϕ̄)
− β = 0
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Using the implicit function theorem, the partial derivative of ϕ with respect to any parameter α is

∂ϕ

∂α
=

− ∂g
∂α
∂g
∂ϕ

Let c(x) = f1 x+ f2 (L− x). First, compute the denominator

∂g

∂ϕ
=

(f2 − f1)
[
u′(c(L2 + ϕ))u′′(c(L2 − ϕ)) + u′(c(L2 − ϕ))u′′(c(L2 + ϕ))

]
u′(c(L2 − ϕ))2

∂g
∂ϕ < 0 since u′′(.) < 0. So sign( ∂ϕ∂α) = sign( ∂g∂α).

Computing the sign of ∂ϕ
∂β gives

sign(
∂ϕ

∂β
) = sign(−1) (< 0)

Computing ∂ϕ
∂f1

gives

∂ϕ

∂f1
=

(L2 − ϕ)u′(c(L2 − ϕ))u′′(c(L2 + ϕ))− (L2 + ϕ)u′(c(L2 + ϕ))u′′(c(L2 − ϕ))

u′(c(L2 − ϕ))2

sign

(
∂ϕ

∂f1

)
> 0 ⇔(

L

2
− ϕ)u′(c(

L

2
− ϕ))u′′(c(

L

2
+ ϕ))− (

L

2
+ ϕ)u′(c(

L

2
+ ϕ))u′′(c(

L

2
− ϕ)) > 0

u′(c(
L

2
− ϕ))u′′(c(

L

2
+ ϕ)) >

(L2 + ϕ)

(L2 − ϕ)
u′(c(

L

2
+ ϕ))u′′(c(

L

2
− ϕ))

u′(c(L2 − ϕ))u′′(c(L2 + ϕ))

u′(c(L2 + ϕ))u′′(c(L2 − ϕ))
<

(L2 + ϕ)

(L2 − ϕ)
(Since u′′(.) < 0)

A(c(L2 + ϕ))

A(c(L2 − ϕ))
<

(L2 + ϕ)

(L2 − ϕ)

Where A(x) = −u′′(x)
u′(x) , the Arrow-Pratt measure of absolute risk aversion.
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Computing ∂ϕ
∂f2

gives

∂ϕ

∂f2
=

(L2 + ϕ)u′(c(L2 − ϕ))u′′(c(L2 + ϕ))− (L2 − ϕ)u′(c(L2 + ϕ))u′′(c(L2 − ϕ))

u′(c(L2 − ϕ))2

sign

(
∂ϕ

∂f2

)
> 0 ⇔(

L

2
+ ϕ)u′(c(

L

2
− ϕ))u′′(c(

L

2
+ ϕ))− (

L

2
− ϕ)u′(c(

L

2
+ ϕ))u′′(c(

L

2
− ϕ)) > 0

u′(c(
L

2
− ϕ))u′′(c(

L

2
+ ϕ)) >

(L2 − ϕ)

(L2 + ϕ)
u′(c(

L

2
+ ϕ))u′′(c(

L

2
− ϕ))

u′(c(L2 − ϕ))u′′(c(L2 + ϕ))

u′(c(L2 + ϕ))u′′(c(L2 − ϕ))
<

(L2 − ϕ)

(L2 + ϕ)
(Since u′′(.) < 0)

A(c(L2 + ϕ))

A(c(L2 − ϕ))
<

(L2 − ϕ)

(L2 + ϕ)

Where A(x) = −u′′(x)
u′(x) , the Arrow-Pratt measure of absolute risk aversion.

Computing ∂ϕ
∂L gives

∂ϕ

∂L
=

(f1 + f2)
(
u′(c(L2 + ϕ))u′′(c(L2 − ϕ))− u′(c(L2 − ϕ))u′′(c(L2 + ϕ))

)
2u′(c(L2 + ϕ))2

sign

(
∂ϕ

∂L

)
> 0 ⇔u′(c(

L

2
+ ϕ))u′′(c(

L

2
− ϕ))− u′(c(

L

2
− ϕ))u′′(c(

L

2
+ ϕ)) > 0

u′(c(
L

2
+ ϕ))u′′(c(

L

2
− ϕ)) > u′(c(

L

2
− ϕ))u′′(c(

L

2
+ ϕ))

u′(c(L2 + ϕ))u′′(c(L2 − ϕ))

u′(c(L2 − ϕ))u′′(c(L2 + ϕ))
< 1 (Since u′′(.) < 0)

A(c(L2 + ϕ))

A(c(L2 − ϕ))
> 1

Proof of proposition 4 (page 21). Define ϕ, the maximum radius of the cycle region, as in equation
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11. Assume that the land constraint binds every period, so we can define a land allocation as

xt = (L− xt, xt), where xt is the area of land allocated to old trees in period t. Let xt+1 = P (xt)

be the function that returns the optimal area of old trees in period t+1 given the area of old trees

in period t. Assume that it exists and is continuous.

We will consider the optimal transition for three regions in xt ∈ [0, L]. Let region one be

[0, L2 − ϕ), region two be [L2 − ϕ, L2 + ϕ], and region three be (L2 + ϕ,L]. We will construct the

optimal transition function piecewise across these three regions

P (xt) =


P1(xt) for xt ∈ [0, L2 − ϕ)

P2(xt) for xt ∈ [L2 − ϕ, L2 + ϕ]

P3(xt) for xt ∈ (L2 + ϕ,L]

We know from proposition 1 that P2(xt) = L−xt. We will begin by showing that P3(xt) = L−xt

as well, and then use this result to show that P1(xt) =
L
2 − ϕ, thus finding the piecewise definition

of P (xt).

The optimal transition function will depend on the optimal value of the aging constraint mul-

tiplier, λt. If λt > 0, then the aging constraint binds, and xt+1 = L − xt. On the other hand, if

λt = 0, then xt+1 ≤ L− xt and we will need to pin down its value.

We will show that for xt in region 3, starting with λt = 0 implies there is no solution to the

KKTs in period t+ 1. Therefore λt > 0 for xt in region 3.

Recall the Euler equation

λt = β
(
u′(ct+1)f2 − u′(ct+1)f1 − λt+1)

)
Assume xt ∈ (L2 + ϕ,L] and λt = 0. Therefore λt+1 = βu′(ct+1)(f2 − f1) > 0. Iterating the Euler

equation and using this value for λt+1 gives an expression for λt+2

λt+2 = (f2 − f1)

(
u′(ct+2)−

1

β
u′(ct+1)

)
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We must have λt+2 ≥ 0 to satisfy the KKT conditions.

λt+2 ≥ 0

⇒ u′(ct+2) ≥
1

β
u′(ct+1)

⇒ xt+2 < xt+1 < xt (with strict inequality because β < 1))

This is incompatible with λt = 0 and λt+1 > 0, which imply that xt+2 = L − xt+1 ≥ xt.

Therefore xt ∈ (L2 + ϕ,L] implies λt > 0, and P3(xt) = L− xt.

We now turn to characterizing P1(xt). For xt in region 1, we begin by showing that assuming

λt > 0 implies there is no solution to the KKTs in period t+1. We then find the optimal transition

for xt+1 ≤ L− xt given λt = 0.

For xt in region 1, if λt > 0, then xt+1 = L−xt, which is in region 3. From our previous result,

xt+2 = P3(xt+1) = xt, which implies a cycle. However, by proposition 1, the only cycles consistent

with the KKTs are those with xt, xt+1 ∈ [L2 − ϕ, L2 + ϕ]. Therefore, λt = 0 in region 1.

Finally, for xt in region 1, let λt = 0, which implies xt+1 ≤ L − xt ∈ (region 3), so λt+1 > 0.

Further, from before, xt+1 in region 3, implies that λt+2 = 0. Using the Euler equation and iterating

by one period we get an expression for λt+2:

(f2 − f1)

(
u′(ct+2)−

1

β
u′(ct+1)

)
= 0

⇒ u′(ct+1)

u′(ct+2)
= β

⇒ ct+1 = (f1(
L

2
− ϕ) + f2(

L

2
+ ϕ))

⇒ xt+1 =
L

2
+ ϕ

So the only allocation of old trees in period t+ 1 consistent with the KKTs when xt is in region 1

is xt+1 =
L
2 + ϕ. Hence P1(xt) =

L
2 + ϕ, a constant. The land allocated to old trees in period t+ 1

is independent of the allocation of old trees in period t, so long as it is in region 1. Any allocation

in region 1 moves to the upper boundary of region 2 in the next period, and then remains in region

2 thenceforth.
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The optimal transition rule is thus

P (xt) =



L
2 + ϕ for xt ∈ [0, L2 − ϕ)

L− xt for xt ∈ [L2 − ϕ, L2 + ϕ]

L− xt for xt ∈ (L2 + ϕ,L]

as shown in figure 7.
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